Effect of Stress on Intervertebral Disc and Facet Joint of Novel Lumbar Spine Soft Implant: Biomechanical Analysis
نویسندگان
چکیده
This study was to evaluate the effect of stress on the intervertebral disc and facet joint after implantation of device for intervertebral assisted motion (DIAM). Nine fresh human lumbar (L1-L5) cadavers were studied. The stress on L3-4, adjacent intervertebral disc and facet joints was measured in four groups. The cadavers in Group 1 were measured without special treatment; the lumbar discectomy and facet joint arthroplasty without implant were performed on L3-4 in Group 2. DIAM and ISOLA screw fixation in L3-4 interspinous was carried out in Group 3 and Group 4, respectively. The stress on disc intervertebrales and facet joint of L3-4 increased after lumbar diskectomy and facet joint arthroplasty. After DIAM fixation, the stress on L4-5, adjacent disc intervertebrales and facet joint was comparable to that under the normal condition. After ISOLA fixation, the stress on disc intervertebrales and facet joint of L3-4 decreased while that on adjacent disc intervertebrales increased. DIAM fixation can efficiently reduce the undesirable increase in stress due to lumbar diskectomy and facet joint arthroplasty and decrease the risk for the degeneration of adjacent disc intervertebrales caused by spinal fusion.
منابع مشابه
Finite Element Analysis of the Biomechanical Effect of Coflex™ on the Lumbar Spine
OBJECTIVE The biomechanical properties of the Coflex™ (Paradigm Spine, NY, USA), a device designed to provide dynamic stabilization without lumbar fusion, have not been clearly defined. The purpose of this study was to determine the efficacy and biomechanical effect of Coflex™ using finite element model (FEM). METHODS A 3D geometric model of the L3-L5 was created by integrating computerized t...
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملLoad Sharing in L4-L5 Spinal Motion Segment Using an Asymmetrical Finite Element Model
Lumbar spine degeneration diseases require precise prediction of biomechanical parameters. These parameters include stress in ligaments, intradiscal pressure and facet loads. For this purpose, several symmetrical FE models of lumbar spine have been proposed previously with inherent simplifications in design. Such models may not give realistic results for biomechanical analysis because of the as...
متن کاملEffects of Intervertebral Disc Degeneration on Biomechanical Behavior of the L4-L5 Lumbar Functional Spinal Unit
The consideration of biomechanical alterations due to intervertebral disc (IVD) degeneration is crucial for the accurate analysis of spine biomechanics. In this study, finite element (FE) models of the L4-L5 functional spinal unit with full coverage of the degeneration grades from healthy IVD to severe degeneration were developed. The effects of IVD degeneration on spine biomechanics were analy...
متن کاملEffect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study.
OBJECTIVE To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. METHODS Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joi...
متن کامل